
Wood Selection:

No long pores, Red Oak, Wenge have large long pores.

Long pores can cause air leaks that are hard to find.

Favorites: Walnut, Alder

At least two square sides.

Softwood, more mellow, woodsy sound. Hardwood, more horn like, clear, precious.


Wood Dimensions

Based on Key 3/4 inch bore G4 to C5, 1 inch bore E4 to G4, 1 1/4 in bore D.

Start with an A minor flute. Use a barrel size of ¾ inch. See chart below. It will play well in the Key of G major.

A G4 flute in a 1" bore will have more bass than a G4 flute in a 3/4 inch bore.

Ideal Key vs. Bore Diameter

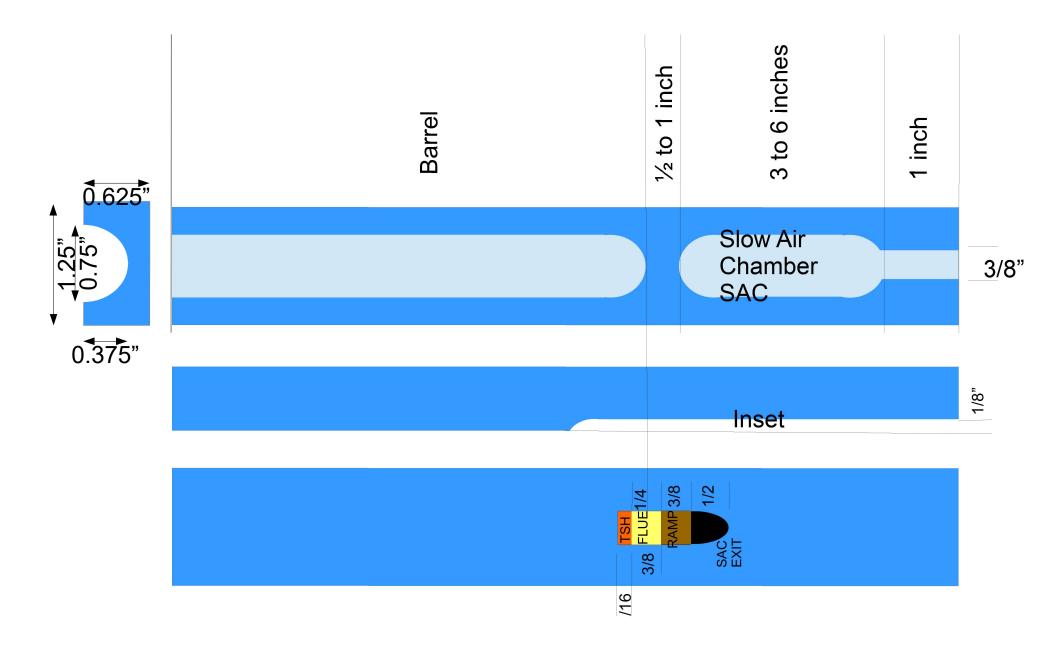
Local Sources for wood:

Nevada County Hardwoods

California Hardwoods

Auburn Hardwoods

Home Depot. (about \$5 to buy enough black walnut for one or two flutes)


Neighbors tree?

I usually start with 24" long wood, 4 to 6 inches for the SAC and plug leaves 20 inches or so for the barrel. So I usually do not build the flute length to a specific key. In the tuning section the flute is cut to the proper length.

Chart for general bore lengths, it is recommended that you start with a longer bore than listed in this chart. Use the chart + 2 inches. See below for barrel length.

Example Flute Designs for mid-range Native American flutes									
Key	Bore diameter	Sound hole		Flue	NAflutomat output				
		length	width	depth	Bore Length	L:D			
A ₄	3/4"	7/32"	3/8"	³ / ₆₄ "	13.114"	17.55			
$G_4^{\#}/A_4^{b}$	3/4"	7/32"	3/8"	3/64"	14.033"	18.77			
G ₄	3/4"	7/32"	3/8"	3/64"	15.006"	20.07			
	7/8"	7/32"	⁷ /16"	³ / ₆₄ "	14.536"	16.65			
$F\#_4/G^b_4$	7/8"	7/32"	7/16"	3/64"	15.568"	17.83			
F ₄	7/8"	7/32"	7/16"	³ / ₆₄ "	16.660"	19.08			
	1"	7/32"	1/2"	3/64"	16.162"	16.19			
E ₄	1"	7/32"	1/2"	3/64"	17.319"	17.35			

Raw wood width = Barrel + $\frac{1}{2}$ inch. Raw wood height = Barrel / 2 + $\frac{1}{4}$ inch. Next slide is an example.

